Product Frequently Asked Questions (FAQ’s)
1. Does the Glass included with my reflector block UV and/or Heat?
Yes, and Yes. All glass has naturally occurring UV inhibitors but we are not adding additional filtration as some amount of UV is known to be beneficial, the primary function of the glass lens is to aid in heat retention and evacuation (air cooled).
2. How much light am I losing by having the glass lens in this fixture?
Clear glass does result in slightly reduced light due to the lambertian refraction effect. The amount depends on the lamp type, glass thickness, shape of reflector and reflective materials.
3. Do I have to air cool my reflector?
No, all ETL listed reflectors are tested without air flow being present. However, the primary function of an air cooled is to induce air flow and evacuate the heated ambient air.
4. What is the maximum length I can have between the ballast and reflector?
This primarily depends upon the ballast type (magnetic vs electronic) and the lamp type (HPS vs Probe Start MH). Some magnetic ballasts can use “long range ignitors” for up to 50’, and most Electronic ballasts reliably fire lamp at lengths above 50’.
5. How many BTU’s Does my system and reflectors create?
1 watt = 3.41 btu per hour.
1000watt = 3,412 btu per hour
6. What is the advantage of running my ballast on 240V?
Higher voltage operation reduced the amperage consumption. However, we all pay for electricity by the Watt. There is no effective power savings in operating 240v vs 120v.
7. Can you explain what CDM/ The LEC®315 is?
CDM = Ceramic Discharge Metal Halide (the next evolution of high-performance metal halide lamps)
LEC®315 = Light Emitting Ceramic® brand, 315 watts
8. What is a VHO T5 fixture
VHO = Very High Output, T5 = Tubular lamp 5x1/8” in diameter
9. How do I figure out how much it will cost a month to operate my lights?
Look at your local power bill for the rate per KW (kilowatt), per hour. Example if you pay .10$ per KW it will cost you .10$ to operate a 1000w system for 1 hour (note: all systems have a certain % of efficiency loss. Typical 1000w ballast / lamp consume approx. 1080w)
10. Can I use any normal extension cord to run my ballast, or do I need a specific rated cord?
Look at the extension cord ANSI rating for maximum wattage / amperage allowed. Never exceed or operate at maximum load rating of an extension cord.
11. Why do timers keep failing on my 1000W ballast?
Wall plug in appliance timers are not built to handle the inrush current created by a 1000W ballast. Even though it may appear that it is rated for it, there’s different types of electrical loads and the timers usually aren’t rated to handle a 1000W ballast load. When trying to control your lights you should use the appropriate Light Controller which are built specifically to handle the load from ballasts.
12. I am having a hard time hanging my reflector do you have any tips?
Four hands are better then two. Ensure that your mounting platform is secure and strong enough to bear the weight of your components.
13. My reflector does not have any hinges or thumb screws, how do I change the lamp or clean the glass?
If the reflector does not have an easy access door, you may need to remove the air ducting.
14. What should I use to clean the inside of my reflector or the lamp?
Ensure fixture is not powered & lamp has been allowed sufficient time to cool. Use a clean dry cloth and gently wipe the outer jacket of the lamp.
15. I broke or lost my glass/frame for my reflector, are these available for sale?
Yes, we offer replace lens, or lens & frame combinations for all current reflectors.
16. The receptacle on my ballast or cord on my reflector has been damaged can this part be repaired or replaced?
We recommend the first call should be to the original place of purchase.
17. What is covered under warranty on my reflector and ballast?
Credit or replacement of product for anything that has failed during normal “as intended” usage during the warranty period. Warranty period determined by product type.
18. What is not covered by my warranty?
Anything other than the product itself.
19. I keep hearing people talk about copper core ballast Vs Aluminum core ballast, what is the difference?
Magnetic ballast windings have been made with both Copper and copper covered Aluminum windings. Copper windings historically have a lower temperature bench rise than aluminum windings.
20. Are all ballast multi volt? Does this mean I can simply plug my ballast into any voltage?
No, some ballast may be 120v only, or 120v/240v or true Quad voltage 120v/208v/240v/277v. Depending on fixture type a licensed electrician may be required to alter the voltages. Altering voltages may potentially void ETL rating and warranty. Certain Electronic ballast are “intellivolt” and do not require internal wiring modification to operate at different voltages. Please refer to your individual product for appropriate markings and operation instruction.
21. What is the proper way to air cool a reflector? Push Vs Pull?
Typically pulling air through a reflector (inducing air) will create a tighter seal around the seams vs using positive pressure to blow (push) through the reflector.
22. Are there any drawbacks to extending your lamp cord?
Yes, longer cords create resistance within the wire. Refer to your individual system and instructions for operation parameters
23. What is the maximum number of lamp extension cords I can use?
Refer to your individual system and instructions for operation parameters
24. Can I use a 1000-watt ballast for supplemental light in my backyard greenhouse?
Absolutely.
25. What happens if my ballast or reflector fails? Who do I contact? Is there any troubleshooting I can do at home?
We recommend the first call should be to the original place of purchase.
26. What is the foot pattern of my reflector? How will factors like reflector dimensions and depth affect my light pattern?
Our goal is to create an even light plane (without hot spots) in a 3x3 or 4x4 pattern. However, with so many reflector types, shapes & reflective subtrates combined with different lighting sources, wattages, and configurations the combinations of light pattern are many.
27. Will my Ballast run on 208v or 277V?
This depends on the ballast itself. Different voltage operation may void ETL and warranty.
28. What is the difference between all the listings I see on ballast.. CE, ETL and UL for example?
These are all safety organizations endorsed by the NRTL Nationally Recognized Testing Laboratories.
29. How many 1000w ballast can I run on a 20A circuit in my house?
Depends on voltage used. Never operate a circuit under max amperage load.
30. Why does my MH lamp still work when my ballast switch is in the HPS setting position?
Certain Pulse Start MH lamps require an HPS ignition in order to fire the lamp. However, please confirm lamp & ballast compliance before operating on any setting.
31. What is the difference between 4KV and 5KV sockets? Or china and leviton brand sockets?
KV = Kilovolt rating. We recommend using 5KV minimum (6KV for 1500w). Leviton is a major brand socket manufacturer.
32. What is the difference of a pulse start metal halide vs probe start metal halide?
Pulse Start requires a higher ignition pulse in order to strike the initial lamp arc. Probe Start lamps do not require this type of ignition pulse.
33. My lowrider reflector has a oval duct coming off of it, does this require special ducting?
No, most all commercial ducting easily form fits to oval air plenums. The CFM of the air flow is not effected by the 6” oval shape vs 6” round shape
34. Explain the benefits of the double ended lamp
1000w HPS DE lamps are more efficient, the can offer an improved light spectrum and have quicker warm up / restrike times as well as improved lumen maintenance over the lifetime of the lamp
35. What is HID Lighting?
HID lighting stands for High Intensity Discharge, which is a special type of lighting that is much more intense (brighter) than other types of lighting available. An HID lighting system consists of a ballast, reflector, socket and lamp (light bulb). The ballast acts like the engine, converting and driving energy to illuminate the lamp. HID lighting options include High Pressure Sodium (HPS), Metal Halide (MH), Mercury Vapor and Low-Pressure Sodium. The two typically used for plant growth are HPS and MH systems.
36. What is Color Rendering Index (CRI), Color Temperature (K) and Lumen?
Color Rendering Index is a subjective measurement of how well a lamp source renders colors. A measurement of the degree of color- shift an object undergoes when illuminated by a light source when compared to a reference source of comparable color temperature. Incandescent light is assumed to have a CRI of around 100 so it will render all colors correctly. MH only has a CRI of about 70, so only 70% of colors will be rendered correctly. HPS has a CRI of 22.
Color Temperature is not how hot the lamp is. Color temperature is the relative whiteness of a piece of tungsten steel heated to that temperature in degrees Kelvin. HPS has a warm (red) color temperature of around 2700K as compared to MH at 4200K, which has a cool (blue) color temperature.
What is important to remember about these two terms is that CRI readings, of two sources, can only be compared if their color temperature is equal. You cannot compare the CRI of HPS (CRI=22) vs. Metal Halide (CRI=70) because the color temperatures are different (2200K vs. 4500K).
Lumen is a measurement of light output. It refers to the amount of light emitted by one candle that falls on one square foot of surface located at one foot from the candle. Traditionally, lumens have been the benchmark of a lamps ability to grow plants, meaning the brighter the lamp the better the plant. However, studies have shown that a broader color spectrum lamp will perform much better than a lamp with high lumen output, especially when it comes to plant growth.
37. What is the difference between MH and HPS with regards to plant growth?
MH lamps provide more of the blue/green spectrum, which is ideal for leafy crops, and/or plants that are in a vegetative (actively growing) stage. MH lamps provide a more natural appearance in color and are typically the choice for plants that have little to no natural light available. HPS lamps provide more yellow/orange/red spectrum, which is ideal for most plants that are actively fruiting and flowering. In addition, HPS lighting is the choice for growers looking to supplement natural sunlight. Ideally, the horticulturalist will use MH to grow their plants and HPS to fruit and flower their plants.
38. What is the difference between HID and Fluorescent lighting with regards to plant growth?
Traditionally, fluorescent lighting was used for seedlings, cuttings and plants with low light-level requirements and HID was used for established plants and plants with higher light-level requirements. Advances in fluorescent lighting technology, however, have provided more options for horticulturists. T5 fluorescent lighting is the latest in plant growth lighting. T5’s high-light output combined with its low heat and energy consumption makes it an ideal light source to grow a broader array of plants.
39. What are the benefits of using T5 fluorescent lighting for plant growth?
T5 lamps provide the ideal spectrum for plant growth. Photosynthesis rates peak at 435 nm and 680 nm. A 6500K T5 lamp has a spectral distribution with relative intensity peaks at 435 nm and 615 nm. This equates to very little wasted light energy in terms of plant growth. T5 lamps promote incredible health and vigor of seedlings and cuttings. Root development is superior relative to other lighting sources. While T5 lighting is excellent for starting seeds and cuttings, it’s also able to produce enough light for full term growth. Because of their minimal heat output, T5 lamps can be placed 6” - 8” above the plant canopy which maximizes photosynthetic response. Unlike conventional fluorescent lamps, plants grown under T5 lamps do not have to be rotated to the center of the lamp. T5’s slim diameter enables better photo-optic control of the emitted light, increasing efficiency in the form of even light distribution.
Environmental Impacts of T5 (at a glance):
o T5 lamps have a diameter of 5/8” – smaller is better when it comes to manufacturing, transportation, and disposal.
o Reduction in raw materials and components needed for manufacturing.
o Reduction in lamp and fixture packaging materials due to relative size.
o T5 are constructed of 40% less glass than T8.
o T5 contain 30% less phosphor than T8.
o T5 contain 3mg of mercury. 70% less than T8.
o Longer lamp life means reduced maintenance cost and less going to the landfill.
40. What are the major differences between HID ballasts and electronic ballasts?
Frequency output to the lamp and energy conversion from electricity to usable light are the biggest differences between HID ballasts and electronic ballasts. HID ballasts produce a frequency of 60 Hz. Electronic ballasts vary from manufacturer to manufacturer, but the frequency produced can be 400x that of an HID ballast. HID ballasts produce more heat than electronic ballasts, thus making electronic ballasts more energy efficient. You will not, however, save money on your electric bill by using electronic ballasts. HID lighting has been available for 60+ years, while electronic ballast (especially 400 watt and higher) is a relatively new technology.
41. Are electronic ballasts more energy efficient?
Electronic ballasts are more efficient at converting electricity into usable light. Since your power bill is based on kilowatt-hours and not efficiency, a 1000-watt electronic ballast will cost you about the same as a 1000-watt HID ballast to operate.
42. Do I need special wiring in my house for my lighting system?
Lighting systems are available in a variety of voltages. The standard used by most gardeners is 120 volts / 60 Hz which plugs into a standard wall outlet. Other voltages may require special circuits and receptacles. Always contact a licensed electrician if the light you purchased has special voltage requirements and never exceed more than 75% of the rated ability of the fuse/breaker. (For example: use no more than 15 amps on a 20-amp circuit.)
43. What voltages are available for HID and Fluorescent lights?
HID systems are available in 120-volt, 208-volt, 240-volt, 277 volt and 480 volt - All at 60 Hz. Fluorescent lighting varies, but most are available from 100 volt to 277 volt and 50 Hz or 60 Hz.
44. How often do I need to change my light bulb?
Most lamp manufacturers rate their lamps by “Average Life Hours” and usually claim 10,000 to 24,000 hours. These ratings are based on when the lamp will completely fail to come on. They do not factor in loss of intensity or loss of color. HID lamps lose intensity and color through normal use. This is OK if you are lighting a warehouse, but when it comes to plant growth, these losses can mean wasted electricity and poor plant performance. Serious horticulturalists recommend that you replace your lamps after 6000 hours of use. This equates to using your light 16 hours a day for one year.
45. How long should I run my lights?
This depends on the type of plants and whether you have natural sunlight available to your garden. As a rule, when you are in a vegetative stage of plant growth and you have no natural sunlight, run your lights 14-18 hours a day. If you have natural sunlight, it will vary because the sunlight may or may not be direct. It will take a little experimenting to find the best length of time to run your lights. If you are actively fruiting and flowering, the rule is to run your lights 12 hours a day if you have no natural light.
46. How high do I need to hang my lights above my plants?
The higher the wattage the further away you want the light to be from your plants due to the amount of heat. HID lighting will be further away than a fluorescent fixture because of this. When mounting your lighting fixture consider the type of plant and how tall the plant will grow. You want to keep the light as close as you can, but not so close to burn the plant. A simple rule is “if it is comfortable for the back of your hand, it will be a safe distance for your plants”. Doing a little research on the type of plant and where it comes from will help in determining how much (or little) light your plants like. With fast growing plants, you may need to check the hanging height on a regular basis as plants that get too close to the lamp will be severely burned.
47. How big of an area will my light cover?
The size of the garden area will determine the wattage you need. If we assume that the plants will get no sunlight, a 1000-watt light will cover about 7 x 7 feet of growing area. A 600 watt will cover 6 x 6 feet, a 400 watt will cover 4 x 4 feet, and a 250 watt will cover 3 x 3 feet. These sized areas would be considered the “Primary Growing” areas. These lights will light-up larger areas, but plants placed outside of the Primary Growing area, will stretch and bend toward the light; a phenomenon called phototropism. Keep these areas of coverage in mind when using multiple fixtures. The best results occur when the areas of coverage overlap.
48. Why do I need glass to get the ETL Listing on a Metal Halide light?
The inner arc tube of a Metal Halide lamp contains mercury. Eddison Testing Laboratories has stated that for a Metal Halide fixture to maintain its ETL Listing, that an additional tempered safety lens is required if the arc-tube and outer glass fail. This will prevent the spread of Mercury.
49. Can I run a 1000-watt bulb in my 400-watt lighting system?
No! The internal components of the ballast are designed to send the correct voltage and current for the rated lamp. Mixing lamps and ballasts will result in premature failure and will void the manufacturers’ warranty. Consider the size area you want your garden to be prior to making a lighting purchase. It is better to grow into a fixture than out of one.
50. Can I run a 430-watt bulb in a 400-watt lighting system?
Yes, the internal components of 400 watt and 430-watt ballasts are almost identical. You will only get 400 watts of light out of the 430-watt lamp, however.
51. Do I need to wear gloves when handling an HID light bulb?
Manufacturers do not state that gloves are required when handling their lamps. It is recommended that your hands be thoroughly washed prior to handling HID lamps though.
52. What is a conversion bulb?
A lamp that operates on the opposite ballast it was originally designed for. For example, a 940-watt conversion lamp is an HPS lamp that runs on a 1000-watt Metal Halide Ballast. There are also MH lamps that are designed to operate on HPS ballasts. These bulbs allow the grower to purchase the ballast of their choice and offer the flexibility of growing a variety of plant types by simply changing the lamp they need.
53. Which Reflectors have built-in socket assemblies?
o Agrotech™
o Adjust-A-Wing (all types)
o BlockBuster™ 6” & 8”
o Cool Sun
o Cool Sun XL
o Econowing
o Great White
o Magnum XXXL 6” & 8” o Silver Sun
o Sun Tube ™ 6”
o Super Sun®
o Super Sun® 2
o Yield Master 8” & 10”
o Yield Master™ II 4” Classic
o Yield Master™ II 6” Supreme & Classic
54. Which Reflectors accept BT-56 bulbs?
o Cool Sun
o Cool Sun XL
o Great White o Large Convertible
o Magnum XXXL 6" & 8"
o Yield Master 10"
55. Does a BT-56 lamp perform better than a BT-37?
No! BT-56 was the standard for many years. The reduced jacketed BT-37 will provide the same intensity and color that a BT-56 lamp provides. BT-37 is a physically smaller lamp and is easier to ship and handle.
56. Is the socket assembly sold separate for ballasts?
Yes
57. How do I clean the inside of my Reflector?
Warm water and mild dish soap are the best to clean and maintain the highly reflective finish. Avoid bleach, ammonia and other harsh or abrasive cleaners.
No posts found
Write a review